If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+100X-1=0
a = 1; b = 100; c = -1;
Δ = b2-4ac
Δ = 1002-4·1·(-1)
Δ = 10004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10004}=\sqrt{4*2501}=\sqrt{4}*\sqrt{2501}=2\sqrt{2501}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-2\sqrt{2501}}{2*1}=\frac{-100-2\sqrt{2501}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+2\sqrt{2501}}{2*1}=\frac{-100+2\sqrt{2501}}{2} $
| 3x/5-x/1=x/10-5/2 | | 3x-2(x+3)=x-5 | | 11-2(3x-4)=-5(-2x+1)-8 | | -70=-3(-3-b)-4(7+5b) | | 11x+7=21x-3 | | 1/4=(1/x+4) | | 7x+4=4x+32 | | 21=-8(8n+8)-3(4n-3) | | 4-3x-3(3x+1)=1-11x | | 6/n+20=5/n | | (14/15)x+40000=x | | -20=-4p-13 | | 7+9n=-2n^2 | | 2x+11=8x-15 | | 27x-1=86x=1 | | 4(7r-5)+2(1+r)=42 | | 4(2x-1)=-3x+32 | | p-7/5=13 | | 13-1/4(8x-5)=-16x | | 1.5=1.02^4x | | 60x=1+78x | | 2(3g-5)-5=0 | | 7/18=d/6 | | p/2-9=14 | | 7m^2+44m-35=0 | | 2(3g-5)=0 | | 2(3+5p)-(1-3p)=57 | | 5(5v-5)=-25=5v | | 15/w=35/21 | | -x2+2x=6x-50 | | 8(n+8)=104 | | -98=-7(2-3x) |